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Abstract   
 
Radiation of sound waves from a semi-infinite rigid duct by local outer lining is investigated 

rigorously by the Wiener-Hopf technique. Through the application of Fourier-transform technique in 

conjunction with the Mode-Matching method, the radiation problem is described by a modified 

Wiener-Hopf equation of the third kind and then solved approximately. The solution involves a set of 

infinitely many expansion coefficients satisfying an infinite system of linear algebraic equations. 

Numerical solution of this system is obtained for various values of the parameters of the problem and 

their effects on the radiation phenomenon are presented.  
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1. Introduction 

 

As is well known, the propagation of sound in cylindrical ducts is a major problem in noise 

pollution. Accordingly, there have been a number of studies on radiation and propagation in 

ducts. 

 By using the Wiener-Hopf technique which is the efficient method for diffraction/radiation 

problems, the radiation of sound from a semi-infinite rigid pipe has been considered by Levine 

and Schwinger [1]. One of the effective methods of reducing unwanted noise which has been 

found empirically to be very successful is to create large additional sound absorption by lining 

the duct with an acoustically absorbent material. Rawlins who showed the effectiveness of this 

method, considered the radiation of sound from an unflanged rigid cylindrical duct with an 

acoustically absorbing internal surface [2]. Demir and Buyukaksoy solved same problem with 

partial linig [3]. They analyzed the effects of the length of internal surface impedance, pipe radius 

etc. with graphically for various values of the parameters. 

 In the present work, a rigorous approximate solution for the problem of sound waves from a 

semi-infinite rigid duct by local outer lining, is presented. This is similar to that considered by 

Demir and Buyukaksoy [3] which consists of partial internal impedance loading by a semi-

infinite circular cylindrical pipe. In our work, as in the above study, hybrid method was applied. 

 By stating the total field in duct region in terms of normal waveguide modes (Dini’s series) 

and using the Fourier Transform elsewhere, the related boundary value problem is formulated as 

a Modified Wiener-Hopf equation of the third kind whose formal solution involves branch-cut 

integrals with unknown integrands and infinitely many unknown expansion coefficients 

satisfying an infinite system of linear algebraic equations. Some computational results illustrating 
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the effects of external surface impedance, duct radius etc. on the radiation phenomenon are 

presented.  

 A time factor 𝑒−𝑖𝜔𝑡 with 𝜔 being the angular frequency is assumed and suppressed 

throughout the paper. 

 

2. Analysis 

 

2.1. Formulation of the Problem  

 

The geometry of the problem is sketched in Fig. 1. This geometry consists of a semi-infinite rigid 

duct with partial external lining. Duct walls are assumed to be infinitely thin, and they defined by 

{𝜌 = 𝑎, 𝑧 ∈ (−∞, 𝑙)}. The part 𝜌 = 𝑎, 𝑧 ∈ (0, 𝑙) of its outer surface is assumed to be treated by an 

acoustically absorbent lining which is denoted by 𝛽, while the other parts of the duct are assumed 

to be rigid.

 
 

Figure 1. Geometry of the problem 

 

From the symmetry of the geometry of the problem and of the incident field, the total field 

everywhere will be independent of 𝜃. 

 The incident sound wave propagating along the positive z  direction and is defined by 

 𝑢𝑖 = 𝑒𝑖𝑘𝑧                                                                                 (1)                                                                     

where 𝑘 = 𝜔/𝑐  denotes the wave number. For the sake of analytical convenience, the total field 

can be written in different regions as: 

 

𝑢𝑇(𝜌, 𝑧) = {

𝑢₁(𝜌, 𝑧)

𝑢2(𝜌, 𝑧)

𝑢3(𝜌, 𝑧) + 𝑢𝑖

   ,   
   ,   
   ,   

𝜌 > 𝑎
𝜌 < 𝑎
𝜌 < 𝑎

      ,   𝑧 ∈ (−∞, ∞) 
,   𝑧 ∈ (𝑙, ∞)

   ,   𝑧 ∈ (−∞, 𝑙)
                          (2) 

 

where 𝑢𝑖  is the incident field as given by (1) and the fields 𝑢𝑗(𝜌, 𝑧), 𝑗 = 1,2,3 which satisfy the 

Helmholtz equation, 
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[
1

𝜌

∂

∂𝜌
(𝜌

∂

∂𝜌
) +

∂2

∂z2
+ k2] 𝑢j(𝜌, 𝑧) = 0     ,      𝑗 = 1,2,3                                  (3) 

 

is to be determined with the help of the following boundary and continuity relations: 

 
∂

∂ρ
𝑢1(𝑎, 𝑧) = 0   ,   𝑧 < 0     ,     

∂

∂ρ
𝑢3(𝑎, 𝑧) = 0   ,   𝑧 < 𝑙                                 (4𝑎, 𝑏) 

 

(𝑖𝑘𝛽 +
∂

∂ρ
) 𝑢1(𝑎, 𝑧) = 0   ,   0 < 𝑧 < 𝑙                                                      (5) 

 
∂

∂ρ
𝑢1(𝑎, 𝑧) −

∂

∂ρ
𝑢2(𝑎, 𝑧) = 0  , 𝑧 > 𝑙    ,    𝑢1(𝑎, 𝑧) − 𝑢2(𝑎, 𝑧) = 0  , 𝑧 > 𝑙              (6𝑎, 𝑏) 

 
∂

∂z
𝑢2(ρ, 𝑙) −

∂

∂z
𝑢3(ρ, 𝑙) = 𝑖𝑘𝑒𝑖𝑘𝑙  , ρ < 𝑎    ,   𝑢2(ρ, 𝑙) − 𝑢3(ρ, 𝑙) = 𝑒𝑖𝑘𝑙 , ρ < 𝑎           (7𝑎, 𝑏) 

 

2.2. Derivation of the Modified Wiener-Hopf Equation 

 

For 𝜌 > 𝑎, 𝑢₁(𝜌, 𝑧) satisfies the Helmholtz equation for 𝑧 ∈ (−∞,∞). Multiplying (3) by 𝑒𝑖𝛼𝑧 

with 𝛼 being the Fourier transform variable and integrating the resultant equation with respect to 

𝑧 from −∞ to ∞, we obtain 

 

[
1

𝜌

∂

∂𝜌
(𝜌

∂

∂𝜌
) +

∂2

∂z2
+ k2] 𝐹(𝜌, 𝛼) = 0     ,     𝑧 ∈ (−∞, ∞)                       (8) 

 

with 

𝐹(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒𝑖𝛼𝑧

∞

−∞

𝑑𝑧 = 𝐹−(𝜌, 𝛼) + 𝐹1(𝜌, 𝛼) + 𝑒𝑖𝛼𝑙𝐹+(𝜌, 𝛼)                (9) 

where 

𝐹−(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒𝑖𝛼𝑧

0

−∞

𝑑𝑧     ,     𝐹+(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒𝑖𝛼(𝑧−𝑙)

∞

𝑙

𝑑𝑧              (10𝑎, 𝑏) 

 

𝐹1(𝜌, 𝛼) = ∫ 𝑢1(𝜌, 𝑧)𝑒𝑖𝛼𝑧

𝑙

0

𝑑𝑧                                                               (10𝑐) 

 

here 𝐹+(𝜌, 𝛼) and 𝐹−(𝜌, 𝛼) are analytic functions on upper region 𝐼𝑚𝛼 > 𝐼𝑚(−𝑘) and on lower 

region 𝐼𝑚𝛼 < 𝐼𝑚𝑘 of the complex 𝛼-plane, respectively, while 𝐹1(𝜌, 𝛼) is an entire function.  

 The general solution of (8) satisfying the radiation condition for 𝜌 > 𝑎 reads 
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𝐹−(𝜌, 𝛼) + 𝐹1(𝜌, 𝛼) + 𝑒𝑖𝛼𝑙𝐹+(𝜌, 𝛼) = 𝐴(𝛼)𝐻0
(1)(𝐾𝜌)                            (11) 

 

where 

𝐾 = √𝑘2 − 𝛼2   ,   𝐾(0) = 𝑘                                                      (12) 

 

is the square root function (see Fig. 2) and 

 

𝐻𝑛
(1)(𝑧) = 𝐽𝑛(𝑧) + 𝑖𝑌𝑛(𝑧)                                                          (13) 

 

is the Hankel function of the first kind and 𝑛-th order. 𝐴(𝛼) in (11) is a spectral coefficient to be 

determined. 

 
 

Figure 2. Branch-cut and integration lines in the complex plane 

 

 Consider now the Fourier transform of (4a) and (5), namely 

 

  𝐹−̇ (𝑎, 𝛼) = 0     ,     𝑖𝑘𝛽𝐹1(𝑎, 𝛼)  +  𝐹1̇(𝑎, 𝛼) = 0                                    (14𝑎, 𝑏) 

 

where the dot specifies the derivative with respect to 𝜌. The differentiation of (11) with respect to 

𝜌 yields 

  𝐹−̇ (𝜌, 𝛼) +  𝐹1̇(𝜌, 𝛼) + 𝑒𝑖𝛼𝑙  𝐹+̇ (𝜌, 𝛼) = −𝐾𝐴(𝛼)𝐻1
(1)(𝐾𝜌)                            (15) 

 

Setting 𝜌 = 𝑎 in (15) and using (14a,b), we obtain 

 

𝐴(𝛼) =
𝑊−(𝛼) + 𝑒𝑖𝛼𝑙𝑊+(𝛼)

𝐻(𝛼)
                                                        (16) 

where 

𝑊±(𝛼) = 𝑖𝑘𝛽𝐹±(𝑎, 𝛼) +   𝐹±̇ (𝑎, 𝛼)                                                (17) 

 

𝐻(𝛼) = 𝑖𝑘𝛽𝐻0
(1)(𝐾𝑎) − 𝐾𝐻1

(1)
(𝐾𝑎)                                             (18) 
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The substitution of 𝐴(𝛼) given in (16) into (11) yields 

 

𝐹−(𝜌, 𝛼) + 𝐹1(𝜌, 𝛼) + 𝑒𝑖𝛼𝑙𝐹+(𝜌, 𝛼) = [𝑊−(𝛼) + 𝑒𝑖𝛼𝑙𝑊+(𝛼)]
𝐻0

(1)(𝐾𝜌)

𝐻(𝛼)
                (19) 

 

In the region 𝜌 < 𝑎, 𝑧 > 𝑙. By taking the half-range Fourier transform of the Helmholtz equation 

satisfies by 𝑢2(𝜌, 𝑧) we get 

 

[
1

𝜌

∂

∂𝜌
(𝜌

∂

∂𝜌
) +

∂2

∂z2
+ K2(𝛼)] 𝐺+(𝜌, 𝛼) = 𝑓(𝜌) − 𝑖𝛼𝑔(𝜌)                            (20) 

where 

𝐺+(𝜌, 𝛼) = ∫ 𝑢2(𝜌, 𝑧)𝑒𝑖𝛼(𝑧−𝑙)

∞

𝑙

𝑑𝑧                                                          (21) 

while 𝑓(𝜌) and 𝑔(𝜌) stand for 

 

𝑓(𝜌) =
∂

∂z
𝑢2(𝜌, 𝑙)     ,     𝑔(𝜌) = 𝑢2(𝜌, 𝑙)                                             (22𝑎, 𝑏) 

 

𝐺+(𝜌, 𝛼) is regular function in the upper (𝐼𝑚𝛼 > 𝐼𝑚(−𝑘)) half of the complex 𝛼-plane. The 

particular solution of (20) which is bounded and satisfying the impedance boundary condition at 

𝜌 = 𝑎 can be obtained by the Green’s function technique. The Green’s function related to (20) 

satisfies the Helmholtz equation.  

 

[
1

𝜌

∂

∂𝜌
(𝜌

∂

∂𝜌
) + K2(𝛼)] Ɠ(𝜌, 𝑡, 𝛼) = 0     ,     𝜌 ≠ 𝑡     ,     𝜌, 𝑡 ∈ (0, 𝑎)                (23) 

 

the solution is 

Ɠ(𝜌, 𝑡, 𝛼) =
1

𝐽(𝛼)
𝑄(𝜌, 𝑡, 𝛼)                                                     (24𝑎) 

with 

𝑄(𝜌, 𝑡, 𝛼) =
𝜋

2
{

𝐽0(𝐾𝜌)[𝐽(𝛼)𝑌0(𝐾𝑡) − 𝑌(𝛼)𝐽0(𝐾𝑡)]   ,   0 ≤ 𝜌 ≤ 𝑡

𝐽0(𝐾𝑡)[𝐽(𝛼)𝑌0(𝐾𝜌) − 𝑌(𝛼)𝐽0(𝐾𝜌)]  ,   𝑡 ≤ 𝜌 ≤ 𝑎
               (24𝑏) 

where 

𝐽(𝛼) = 𝑖𝑘𝛽𝐽0(𝐾𝑎) − 𝐾𝐽1(𝐾𝑎)                                                  (24𝑐) 

𝑌(𝛼) = 𝑖𝑘𝛽𝑌0(𝐾𝑎) − 𝐾𝑌1(𝐾𝑎)                                                 (24𝑑) 

 

The solution of (20) can now be written as 

𝐺+(𝜌, 𝛼) =
1

𝐽(𝛼)
[𝐵(𝛼)𝐽0(𝐾𝜌) + ∫(𝑓(𝑡) − 𝑖𝛼𝑔(𝑡))𝑄(𝑡, 𝜌, 𝛼)

𝑎

0

𝑡𝑑𝑡]                (25) 
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In (25), 𝐵(𝛼) is a spectral coefficient to be determined, while 𝑓 and 𝑔 are given by (22a,b). 

Combining (6a) and (6b) and using Fourier transform, we can write 

 

𝑖𝑘𝛽𝐺+(𝑎, 𝛼) +   𝐺+̇ (𝑎, 𝛼) = 𝑊+(𝛼)                                                      (26) 
 

Substituting (25) and its derivative with respect to 𝜌 in (26), one can obtain 𝐵(𝛼) = 𝑊+(𝛼) 

Inserting now 𝐵(𝛼) into (25), we get 

 

𝐺+(𝜌, 𝛼) =
1

𝐽(𝛼)
[𝑊+(𝛼)𝐽0(𝐾𝜌) + ∫(𝑓(𝑡) − 𝑖𝛼𝑔(𝑡))𝑄(𝑡, 𝜌, 𝛼)

𝑎

0

𝑡𝑑𝑡]                (27) 

 

The left hand side of (27) is regular in the upper half plane. The regularity of the right hand side 

may be violated by the presence of simple poles occurring at the zeros of 𝐽(𝛼) lying in the upper 

half plane, namely at 𝛼 = 𝛼𝑚,   𝑚 = 1,2, …  

𝑖𝑘𝑎𝛽𝐽0(𝛾𝑚) − 𝛾𝑚𝐽1(𝛾𝑚) = 0   ,   𝛼𝑚 = √𝑘2 − (
𝛾𝑚

𝑎
)

2

   ,   𝐼𝑚(𝛼𝑚) ≥ 𝐼𝑚𝑘          (28) 

 

We can eliminate these poles by imposing that their residues are zero. This gives 

 

𝑊+(𝛼𝑚) =
𝑎

2
𝐽0(𝛾𝑚)[1 − (𝛽𝑘𝑎 𝛾𝑚⁄ )2][𝑓𝑚 − 𝑖𝛼𝑚𝑔𝑚]                            (29) 

with 

[
𝑓𝑚

𝑔𝑚
] =

2

𝑎2𝐽0
2(𝛾𝑚)[1 − (𝛽𝑘𝑎 𝛾𝑚⁄ )2]

∫ [
𝑓(𝑡)

𝑔(𝑡)
] 𝐽0 (

𝛾𝑚

𝑎
𝑡) 𝑡𝑑𝑡

𝑎

0

                          (30𝑎) 

 

Owing to (30a), 𝑓(𝜌) and 𝑔(𝜌) can be expanded into Dini series as follows; 

 

[
𝑓(𝜌)

𝑔(𝜌)
] = ∑ [

𝑓𝑚

𝑔𝑚
] 𝐽0 (

𝛾𝑚

𝑎
𝜌)

∞

𝑚=1

                                                    (30𝑏) 

 

Using the continuity relation (6b) and combining (19) with (27), we get the following Modified 

Wiener-Hopf Equation (MWHE) of the third kind. 

 

𝑎

2
𝐹−(𝑎, 𝛼)𝑁(𝛼) +

𝑒𝑖𝛼𝑙𝑊+(𝛼)

𝑀(𝛼)
−

𝑎

2
𝐹1(𝑎, 𝛼) = 𝑒𝑖𝛼𝑙

𝑎

2
∑

𝐽0(𝛾𝑚)

𝛼𝑚
2 − 𝛼2

∞

𝑚=1

[𝑓𝑚 − 𝑖𝛼𝑔𝑚]      (31𝑎) 

 

where 

𝑀(𝛼) = 𝜋𝑖𝐽(𝛼)𝐻(𝛼)     ,     𝑁(𝛼) =
𝐾𝐻1

(1)(𝐾𝑎)

𝐻(𝛼)
                             (31𝑏, 𝑐) 
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2.3. Approximate Solution of the Modified Wiener-Hopf Equation 

 

By using the factorization and decomposition procedures, together with the Liouville theorem, 

the modified Wiener-Hopf equation in (31a) can be reduced to the following system of Fredholm 

integral equations of the second kind: 

 

𝑊+(𝛼)

𝑀+(𝛼)
= −

1

2𝜋𝑖

𝑎

2
∫

𝑀−(𝜏)𝑁(𝜏)𝑒−𝑖𝜏𝑙𝐹−(𝑎, 𝜏)

(𝜏 − 𝛼)
𝑑𝜏

𝐿+

   

+
1

2𝜋𝑖

𝑎

2
∫

𝑀−(𝜏)

(𝜏 − 𝛼)
∑

𝐽0(𝛾𝑚)

𝛼𝑚
2 − 𝜏2

∞

𝑚=1

[𝑓𝑚 − 𝑖𝜏𝑔𝑚]𝑑𝜏                      (32𝑎)

𝐿+

 

𝑎

2
𝐹−(𝑎, 𝛼)𝑁−(𝛼) =  

1

2𝜋𝑖
∫

𝑒𝑖𝜏𝑙𝑊+(𝜏)

𝑁+(𝜏)𝑀(𝜏)(𝜏 − 𝛼)
𝑑𝜏

𝐿−

                                      

−
1

2𝜋𝑖

𝑎

2
∫

𝑒𝑖𝜏𝑙

𝑁+(𝜏)(𝜏 − 𝛼)
∑

𝐽0(𝛾𝑚)

𝛼𝑚
2 − 𝜏2

∞

𝑚=1

[𝑓𝑚 − 𝑖𝜏𝑔𝑚]𝑑𝜏           (32𝑏)

𝐿−

 

 

where 𝑀+(𝛼), 𝑁+(𝛼) and 𝑀−(𝛼), 𝑁−(𝛼) are the split functions, analytic and free of zeros in the 

upper and lower halves of the complex 𝑎 − plane, respectively, resulting from the Wiener-Hopf 

factorization of 𝑀(𝛼) and 𝑁(𝛼) which are given by (31b) and (31c), in the following form: 

 
𝑀(𝛼) = 𝑀+(𝛼)𝑀−(𝛼)     ,     𝑁(𝛼) = 𝑁+(𝛼)𝑁−(𝛼)                                            (33𝑎, 𝑏) 

 

Here the explicit forms for 𝑀+(𝛼), 𝑀−(𝛼) and 𝑁+(𝛼), 𝑁−(𝛼) can be obtained as is done in [4]. 

For large argument, the coupled system of Fredholm integral equations of the second kind in 

(32a,b), is susceptible to a treatment by iterations. Now, the approximate solution of the MWHE 

reads: 

 

𝑊+(𝛼)

𝑀+(𝛼)
≈

𝑎

2
∑

𝐽0(𝛾𝑚)[𝑓𝑚 + 𝑖𝛼𝑚𝑔𝑚]𝑀+(𝛼𝑚)

2𝛼𝑚(𝛼 + 𝛼𝑚)
+

𝑎

2

∞

𝑚=1

∑
𝐽0(𝛾𝑚)[𝑓𝑚 − 𝑖𝛼𝑚𝑔𝑚]𝑒𝑖𝛼𝑚𝑙

2𝛼𝑚𝑁+(𝛼𝑚)

∞

𝑚=1

𝐼1(𝛼)   (34𝑎) 

 

𝐹−(𝑎, 𝛼)𝑁−(𝛼) ≈ − ∑
𝐽0(𝛾𝑚)[𝑓𝑚 − 𝑖𝛼𝑚𝑔𝑚]𝑒𝑖𝛼𝑚𝑙

2𝛼𝑚𝑁+(𝛼𝑚)(𝛼 − 𝛼𝑚)
+

∞

𝑚=1

∑
𝐽0(𝛾𝑚)[𝑓𝑚 + 𝑖𝛼𝑚𝑔𝑚]𝑀+(𝛼𝑚)

2𝛼𝑚

∞

𝑚=1

𝐼2(𝛼) 

(34𝑏) 
with 

𝐼1(𝛼) =
1

2𝜋𝑖
∫

𝑀−(𝜏)𝑁(𝜏)𝑒−𝑖𝜏𝑙

(𝜏 − 𝑎)(𝜏 − 𝛼𝑚)𝑁−(𝜏)
𝑑𝜏

𝐿+

  ,   𝐼2(𝛼) =  
1

2𝜋𝑖
∫

𝑀+(𝜏)𝑒𝑖𝜏𝑙

𝑁+(𝜏)𝑀(𝜏)(𝜏 − 𝑎)(𝜏 + 𝛼𝑚)
𝑑𝜏

𝐿−

 

(35𝑎, 𝑏) 
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The integral given by (35a,b) can be obtained numerically. First the integration line 𝐿± can be 

deformed onto the branch-cut, then the integrals can be evaluated by the help of Cauchy theorem. 

 

2.4. Reduction to an Infinite System of Linear Algebraic Equations 

 

In the region 𝜌 < 𝑎, 𝑧 < 𝑙, 𝑢₃(𝜌, 𝑧) can be expressed as 

𝑢₃(𝜌, 𝑧) = ∑ 𝑐𝑛𝑒−𝑖𝜎𝑛𝑧

∞

𝑛=0

𝐽0 (
𝐽𝑛

𝑎
𝜌)                                                (36𝑎) 

with 

𝐽1(𝐽𝑛) = 0   ,   𝜎𝑛 = √𝑘2 − (
𝐽𝑛

𝑎
)

2

   ,   𝜎0 = 𝑘                                     (36𝑏) 

From the continuity relations (7a,b) and using (30b).  

∑ 𝑓𝑚𝐽0 (
𝛾𝑚

𝑎
𝜌) =

∞

𝑚=1

− 𝑖 ∑  𝜎𝑛𝑐𝑛𝑒−𝑖𝜎𝑛𝑙

∞

𝑛=0

𝐽0 (
𝐽𝑛

𝑎
𝜌) + 𝑖𝑘𝑒𝑖𝑘𝑙                         (37𝑎) 

∑ 𝑔𝑚𝐽0 (
𝛾𝑚

𝑎
𝜌) =

∞

𝑚=1

∑  𝑐𝑛𝑒−𝑖𝜎𝑛𝑙

∞

𝑛=0

𝐽0 (
𝐽𝑛

𝑎
𝜌) + 𝑒𝑖𝑘𝑙                                          (37𝑏) 

Then multiply both sides of (37a,b) by 𝜌𝐽0 (
𝐽𝑙

𝑎
𝜌) and integrate from 𝜌 = 0 to 𝜌 = 𝑎. We get 

∑
𝐽0(𝛾𝑚)

𝛾𝑚
2

∞

𝑚=1

[𝑓𝑚 + 𝑖𝑘𝑔𝑚] =
𝑒𝑖𝑘𝑙

𝑎𝛽
     ,     𝑛 = 0                                     (38𝑎) 

2𝑘𝑎𝛽

𝜎𝑛𝐽0(𝐽𝑛)
∑

𝐽0(𝛾𝑚)

𝛾𝑚
2 − 𝐽𝑛

2

∞

𝑚=1

[𝑓𝑚 + 𝑖𝜎𝑛𝑔𝑚] = 0     ,     𝑛 = 1,2, …                            (38𝑏) 

By substituting 𝛼 = 𝛼1, 𝛼2, 𝛼3, … in (34a) and using (29) we obtain 

 

𝐽0(𝛾𝑟)[1 − (𝛽𝑘𝑎 𝛾𝑟⁄ )2][𝑓𝑟 − 𝑖𝛼𝑟𝑔𝑟]

𝑀+(𝛼𝑟)
= ∑

𝐽0(𝛾𝑚)[𝑓𝑚 + 𝑖𝛼𝑚𝑔𝑚]𝑀+(𝛼𝑚)

2𝛼𝑚(𝛼𝑟 + 𝛼𝑚)

∞

𝑚=1

 

+ ∑
𝐽0(𝛾𝑚)[𝑓𝑚 − 𝑖𝛼𝑚𝑔𝑚]𝑒𝑖𝛼𝑚𝑙

2𝛼𝑚𝑁+(𝛼𝑚)

∞

𝑚=1

𝐼1(𝛼𝑟)      (39) 

 

(38a,b) and (39) are the required linear system of algebraic equations which permits us to 

determine 𝑓𝑚 and 𝑔𝑚. The coefficient 𝑐𝑚 can be found from 𝑓𝑚 or 𝑔𝑚. All the numerical results 

will be derived by truncating the infinite series and the infinite systems of linear algebraic 

equations after first 𝑁 term. It was seen that the amplitude of the radiated field becomes 

insensitive to the increase of the truncation after 𝑁 = 20. 
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2.5. Analysis of the Field 

 

The total field in the region 𝜌 > 𝑎 can be obtained by taking the inverse Fourier transform of 

𝐹(𝜌, 𝛼). From (11) and (16), one can write 

𝑢1(𝜌, 𝑧) =
1

2𝜋
∫ 𝑖𝑘𝛽𝐹−(𝑎, 𝛼)

𝐻0
(1)(𝐾𝜌)

𝐻(𝛼)
𝓛

𝑒−𝑖𝛼𝑧𝑑𝛼 +
1

2𝜋
∫ 𝑊+(𝛼)

𝐻0
(1)(𝐾𝜌)

𝐻(𝛼)
𝑒−𝑖𝛼(𝑧−𝑙)𝑑𝛼

𝓛

    (40𝑎) 

where 𝓛 is a straight line parallel to the real 𝛼-axis, lying in the strip 𝐼𝑚(−𝑘) < 𝐼𝑚𝛼 < 𝐼𝑚𝑘. 

Utilizing the asymptotic expansion of Hankel function and using the saddle point technique, we 

get 

𝑢1(𝜌, 𝑧)~
𝑘

𝑖𝜋
[
𝑖𝑘𝛽𝐹−(𝑎, −𝑘𝑐𝑜𝑠𝜃1)

H(−𝑘𝑐𝑜𝑠𝜃1)

𝑒𝑖𝑘𝑟1

𝑘𝑟1
+

𝑊+(−𝑘 cos θ2)

H(−𝑘𝑐𝑜𝑠𝜃2)

𝑒𝑖𝑘𝑟2

𝑘𝑟2
]                          (40𝑏) 

 

where 𝑟1, θ1 and 𝑟2, θ2 are the spherical coordinates defined by 

 

𝜌 = 𝑟1𝑠𝑖𝑛θ1     ,     z = 𝑟1𝑐𝑜𝑠θ1                                                (41a) 

and 

𝜌 = 𝑟2𝑠𝑖𝑛θ2     ,     z − l = 𝑟2𝑐𝑜𝑠θ2                                         (41b) 

 

3. Numerical Results 

 

In this section, some graphics displaying the effects of the radius of the pipe, the external lining 

etc. on the radiation phenomenon are presented. The far field values are plotted at a distance 46 m 

away from the duct edge. Figure 3 shows the variation of the amplitude of the radiated field 

against the observation angle for different values of the impedance. From Figure 4, it is observed 

that the radiated field increases with increasing duct radius, as expected. 

 
Figure 3. 20𝑙𝑜𝑔|𝑢1| versus the observation angle for 

different values of the impedance. 

Figure 4. 20𝑙𝑜𝑔|𝑢1| versus the observation         

angle for different values of the duct radius. 

 

Figure 5 shows the variation the modules of reflection coefficient |𝑐0| with respect to frequency 𝑓 

for different positive values of the lining impedance 𝛽. Finally Figure 6 displays the variation of 
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the amplitude of the radiated field versus 𝑓. 

 
    Figure 5. Variation of the reflection coefficient 

|𝑐0| versus frequency 𝑓. 

 Figure 6. 20𝑙𝑜𝑔|𝑢1| versus 𝑓.

 

 

4. Conclusions 

  

The radiation of sound waves from a semi-infinite rigid duct whose outer surface is treated by an 

acoustically absorbing material of finite length, has been investigated by using the mode-

matching method in conjunction with the Wiener-Hopf technique. This problem is more 

complicated due to partial lining of the external surface. To overcome the additional difficulty 

caused by the finite impedance discontinuity, the problem was first reduced to a system of 

Fredholm integral equations of the second kind and then solved approximately by iterations. The 

solution involves two systems of linear algebraic equations involving two sets of infinitely many 

unknown expansion coefficient. A numerical solution to these systems has obtained for various 

values of the parameters such as radius 𝑎, outer partial impedance 𝛽 and wave number 𝑘.  
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